Uniform approximation of functions through partitioning
نویسندگان
چکیده
منابع مشابه
Uniform Approximation Through Partitioning
In this paper, the problem of best uniform polynomial approximation to a continuous function on a compact set X is approached through the partitioning of X and the definition of norms corresponding to the partition and each of the standard Lp norms 1 g p < oo. For computational convenience, a pseudo norm is defined corresponding to each partition. When the partition is chosen appropriately, the...
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کاملUNIFORM APPROXIMATION BY b – HARMONIC FUNCTIONS
The Mergelyan and Ahlfors-Beurling estimates for the Cauchy transform give quantitative information on uniform approximation by rational functions with poles off K. We will present an analogous result for an integral transform on the unit sphere in C2 introduced by Henkin, and show how it can be used to study approximation by functions that are locally harmonic with respect to the Kohn Laplacia...
متن کاملRigorous uniform approximation of D-finite functions using Chebyshev expansions
A wide range of numerical methods exists for computing polynomial approximations of solutions of ordinary differential equations based on Chebyshev series expansions or Chebyshev interpolation polynomials. We consider the application of such methods in the context of rigorous computing (where we need guarantees on the accuracy of the result), and from the complexity point of view. It is well-kn...
متن کاملUniform Rectifiability, Carleson Measure Estimates, and Approximation of Harmonic Functions
Let E ⊂ Rn+1, n ≥ 2, be a uniformly rectifiable set of dimension n. Then bounded harmonic functions in Ω := Rn+1 \ E satisfy Carleson measure estimates, and are “ε-approximable”. Our results may be viewed as generalized versions of the classical F. and M. Riesz theorem, since the estimates that we prove are equivalent, in more topologically friendly settings, to quantitative mutual absolute con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1973
ISSN: 0021-9045
DOI: 10.1016/0021-9045(73)90069-5